A Portable Multi-CPU/Multi-GPU Based Vertebra Localization in Sagittal MR Images
نویسندگان
چکیده
Accurate Vertebra localization presents an essential step for automating the diagnosis of many spinal disorders. In case of MR images of lumbar spine, this task becomes more challenging due to vertebra complex shape and high variation of soft tissue. In this paper, we propose an efficient framework for spine curve extraction and vertebra localization in T1-weighted MR images. Our method is a fast parametrized algorithm based on three steps: 1. Image enhancing 2. Meanshift clustering [5] 3. Pattern recognition techniques. We propose also an adapted and effective exploitation of new parallel and hybrid platforms, that consist of both central (CPU) and graphic (GPU) processing units, in order to accelerate our vertebra localization method. The latter can exploit both NVIDIA and ATI graphic cards since we propose CUDA and OpenCL implementations of our vertebra localization steps. Our experiments are conducted using 16 MR images of lumbar spine. The related results achieved a vertebra detection rate of 95% with an acceleration ranging from 4 to 173 × thanks to the exploitation of Multi-CPU/Multi-GPU platforms.
منابع مشابه
Heterogeneous Computing for Vertebra Detection and Segmentation in X-Ray Images
The context of this work is related to the vertebra segmentation. The method we propose is based on the active shape model (ASM). An original approach taking advantage of the edge polygonal approximation was developed to locate the vertebra positions in a X-ray image. Despite the fact that segmentation results show good efficiency, the time is a key variable that has always to be optimized in a...
متن کاملParallelization of Rich Models for Steganalysis of Digital Images using a CUDA-based Approach
There are several different methods to make an efficient strategy for steganalysis of digital images. A very powerful method in this area is rich model consisting of a large number of diverse sub-models in both spatial and transform domain that should be utilized. However, the extraction of a various types of features from an image is so time consuming in some steps, especially for training pha...
متن کاملOptimized co-registration method of Spinal cord MR Neuroimaging data analysis and application for generating multi-parameter maps
Introduction: The purpose of multimodal and co-registration In MR Neuroimaging is to fuse two or more sets images (T1, T2, fMRI, DTI, pMRI, …) for combining the different information into a composite correlated data set in order to visualization, re-alignment and generating transform to functional Matrix. Multimodal registration and motion correction in spinal cord MR Neuroimag...
متن کاملDeep learning for automatic localization, identification, and segmentation of vertebral bodies in volumetric MR images
This paper proposes an automatic method for vertebra localization, labeling, and segmentation in multi-slice Magnetic Resonance (MR) images. Prior work in this area on MR images mostly requires user interaction while our method is fully automatic. Cubic intensity-based features are extracted from image voxels. A deep learning approach is used for simultaneous localization and identification of ...
متن کاملUltra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU
Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014